Loading [MathJax]/jax/output/CommonHTML/jax.js

Ocean Wiki

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
lecture6:primequation [2025/03/26 09:47] – [Transport Equations for Tracer] mattlecture6:primequation [2025/03/26 11:17] (current) – [Transport Equations for Tracer] matt
Line 71: Line 71:
  
   * The mathematical term for the accumulation rate is     * The mathematical term for the accumulation rate is  
-\begin{equation*}(\frac{\partial{A}}{\partial{t}}}) {\partial x}{\partial y}{\partial z}\end{equation*} + 
 +\begin{equation*} 
 +\frac{\partial A}{\partial t} {\partial x}{\partial y}{\partial z} 
 +\end{equation*} 
  
   * The mathematical term for the flux rate of A into the volume is a bit more complicated. The flux's, or flow through an area's, approximation is derived for each component at a time, which will give us    * The mathematical term for the flux rate of A into the volume is a bit more complicated. The flux's, or flow through an area's, approximation is derived for each component at a time, which will give us 
Line 78: Line 81:
 \begin{equation*} \begin{equation*}
  
--(\frac{\partial}{\partial x}}(Au) + +-\left(\frac{\partial}{\partial x}(Au) + 
-\frac{\partial}{\partial y}}(Av) + +\frac{\partial}{\partial y}(Av) + 
-\frac{\partial}{\partial z}}(Aw))+\frac{\partial}{\partial z}(Aw)\right)
 {\partial x}{\partial y}{\partial z} {\partial x}{\partial y}{\partial z}
  
Line 88: Line 91:
  
 \begin{equation*} \begin{equation*}
-(\frac{\partial {A}}{\partial{t}}} + +\left(\frac{\partial A}{\partial t} + 
-\frac{\partial}{\partial x}}(Au) + +\frac{\partial}{\partial x}(Au) + 
-\frac{\partial}{\partial y}}(Av) + +\frac{\partial}{\partial y}(Av) + 
-\frac{\partial}{\partial z}}(Aw))+\frac{\partial}{\partial z}(Aw) \right)
 {\partial x}{\partial y}{\partial z} {\partial x}{\partial y}{\partial z}
 \end{equation*} \end{equation*}
Line 98: Line 101:
  
 \begin{equation*} \begin{equation*}
-\frac{\partial {A}}{\partial{t}}} + +\frac{\partial {A}}{\partial{t}} + 
-\frac{\partial}{\partial x}}(Au) + +\frac{\partial}{\partial x}(Au) + 
-\frac{\partial}{\partial y}}(Av) + +\frac{\partial}{\partial y}(Av) + 
-\frac{\partial}{\partial z}}(Aw)+\frac{\partial}{\partial z}(Aw)
 = S(A), = S(A),
 \end{equation*} \end{equation*}
Line 113: Line 116:
  
 \begin{equation*} \begin{equation*}
-\frac{\partial {\rho}}{\partial{t}}} + +\frac{\partial \rho}{\partial t} + 
-\frac{\partial}{\partial x}}(\rho u) + +\frac{\partial}{\partial x}(\rho u) + 
-\frac{\partial}{\partial y}}(\rho v) + +\frac{\partial}{\partial y}(\rho v) + 
-\frac{\partial}{\partial z}}(\rho w)+\frac{\partial}{\partial z}(\rho w)
 = 0, = 0,
 \end{equation*} \end{equation*}
Line 147: Line 150:
 === Term definitions === === Term definitions ===
 ^ Definition      ^ Term     ^ ^ Definition      ^ Term     ^
-|Material Derivative Operator |$  +|Material Derivative Operator | $ \frac{D}{Dt} := \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z} =  \frac{\partial}{\partial t}+\vec{u} \cdot \nabla $ |
-\frac{D}{D{t}} :=  +
-\frac{\partial}{\partial {t}} + +
-u \frac{\partial}{\partial{x}} +  +
-v \frac{\partial}{\partial{y}} + +
-w \frac{\partial}{\partial{z}} =  +
-\frac{\partial}{\partial{t}}+ +
-\vec{u} \cdot \nabla  +
-$|+
 |Local Derivative|t| |Local Derivative|t|
 |Advection|uρ| |Advection|uρ|
Line 173: Line 168:
 \frac{\partial C_i}{\partial t} + \frac{\partial C_i}{\partial t} +
 \frac{\partial}{\partial x}(C_i u) + \frac{\partial}{\partial x}(C_i u) +
- 
 \frac{\partial}{\partial y}(C_i v) + \frac{\partial}{\partial y}(C_i v) +
 \frac{\partial}{\partial z}(C_i w) \frac{\partial}{\partial z}(C_i w)
Line 195: Line 189:
  
 ^ Definition      ^ Equation     ^ Term definition      ^ Term     ^ ^ Definition      ^ Equation     ^ Term definition      ^ Term     ^
-|Tracer Equation (no diffusion) |$ +|Tracer Equation (no diffusion) |Qi=Cit+(Ciu) |Change of parcel concentration \\ Local Derivative \\ \\ Sink/Source|Cit \\ \\ \\ Qi
-Q_i=\frac{\partial{C_i}}{\partial{t}} +  +|Tracer Equation with diffusion ((This includes Fick's first law: JD=kiCi ))|QiJD=Cit+(Ciu)|Diffusion |JD|
-\nabla  \cdot (C_i \vec{u} )  +
-|ChangeofparcelconcentrationLocalDerivativeSink/Source| \frac{\partial{C_i}}{\partial{t}} Q_i $| +
-|Tracer Equation with diffusion ((This includes Fick's first law: JD=kiCi ))|$ +
-Q_i  -\nabla \cdot \vec{J_D}   = +
- \frac{\partial{C_i}}{\partial{t}} +  +
-\nabla  \cdot (C_i \vec{u} )  +
-|Diffusion| -\nabla \cdot \vec{J_D} $|+
 |Tracer Equation for Seasalt S \\ (for Ci=S and no salt sources  QS=0)|ρDSDt=(ρksS)|Material Derivative of Salinity |DSDt| |Tracer Equation for Seasalt S \\ (for Ci=S and no salt sources  QS=0)|ρDSDt=(ρksS)|Material Derivative of Salinity |DSDt|
  
Line 229: Line 216:
 \end{equation*} \end{equation*}
  
-To receive the final version of this equation it needs to account for sources and sinks, making $S(A)&\neq 0.SuchsourcesandsinkscouldbeaninternalheatsourceQ_Toranexternalheatflux\vec{J_T}$, e.g., solar radiation.+To receive the final version of this equation it needs to account for sources and sinks, making S(A)0. Such sources and sinks could be an internal heat source QT or an external heat flux JT, e.g., solar radiation.
  
 \begin{equation*} \begin{equation*}
Print/export
QR Code
QR Code lecture6:primequation (generated for current page)