Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
lecture6:primequation [2025/03/26 09:18] – [The Principle of Mass Conservation] matt | lecture6:primequation [2025/03/26 11:17] (current) – [Transport Equations for Tracer] matt | ||
---|---|---|---|
Line 71: | Line 71: | ||
* The mathematical term for the accumulation rate is | * The mathematical term for the accumulation rate is | ||
- | \begin{equation*}(\frac{\partial{A}}{\partial{t}}}) {\partial x}{\partial y}{\partial z}\end{equation*} | + | |
+ | \begin{equation*} | ||
+ | \frac{\partial A}{\partial t} {\partial x}{\partial y}{\partial z} | ||
+ | \end{equation*} | ||
* The mathematical term for the flux rate of A into the volume is a bit more complicated. The flux' | * The mathematical term for the flux rate of A into the volume is a bit more complicated. The flux' | ||
Line 78: | Line 81: | ||
\begin{equation*} | \begin{equation*} | ||
- | -(\frac{\partial}{\partial x}}(Au) + | + | -\left(\frac{\partial}{\partial x}(Au) + |
- | \frac{\partial}{\partial y}}(Av) + | + | \frac{\partial}{\partial y}(Av) + |
- | \frac{\partial}{\partial z}}(Aw)) | + | \frac{\partial}{\partial z}(Aw)\right) |
{\partial x}{\partial y}{\partial z} | {\partial x}{\partial y}{\partial z} | ||
Line 88: | Line 91: | ||
\begin{equation*} | \begin{equation*} | ||
- | (\frac{\partial | + | \left(\frac{\partial A}{\partial t} + |
- | \frac{\partial}{\partial x}}(Au) + | + | \frac{\partial}{\partial x}(Au) + |
- | \frac{\partial}{\partial y}}(Av) + | + | \frac{\partial}{\partial y}(Av) + |
- | \frac{\partial}{\partial z}}(Aw)) | + | \frac{\partial}{\partial z}(Aw) |
{\partial x}{\partial y}{\partial z} | {\partial x}{\partial y}{\partial z} | ||
\end{equation*} | \end{equation*} | ||
Line 98: | Line 101: | ||
\begin{equation*} | \begin{equation*} | ||
- | \frac{\partial {A}}{\partial{t}}} + | + | \frac{\partial {A}}{\partial{t}} + |
- | \frac{\partial}{\partial x}}(Au) + | + | \frac{\partial}{\partial x}(Au) + |
- | \frac{\partial}{\partial y}}(Av) + | + | \frac{\partial}{\partial y}(Av) + |
- | \frac{\partial}{\partial z}}(Aw) | + | \frac{\partial}{\partial z}(Aw) |
= S(A), | = S(A), | ||
\end{equation*} | \end{equation*} | ||
Line 113: | Line 116: | ||
\begin{equation*} | \begin{equation*} | ||
- | \frac{\partial | + | \frac{\partial \rho}{\partial t} + |
- | \frac{\partial}{\partial x}}(\rho u) + | + | \frac{\partial}{\partial x}(\rho u) + |
- | \frac{\partial}{\partial y}}(\rho v) + | + | \frac{\partial}{\partial y}(\rho v) + |
- | \frac{\partial}{\partial z}}(\rho w) | + | \frac{\partial}{\partial z}(\rho w) |
= 0, | = 0, | ||
\end{equation*} | \end{equation*} | ||
Line 147: | Line 150: | ||
=== Term definitions === | === Term definitions === | ||
^ Definition | ^ Definition | ||
- | |Material Derivative Operator |$ | + | |Material Derivative Operator | $ \frac{D}{Dt} := \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z} = \frac{\partial}{\partial t}+\vec{u} \cdot \nabla $ | |
- | \frac{D}{D{t}} := | + | |
- | \frac{\partial}{\partial | + | |
- | u \frac{\partial}{\partial{x}} + | + | |
- | v \frac{\partial}{\partial{y}} + | + | |
- | w \frac{\partial}{\partial{z}} = | + | |
- | \frac{\partial}{\partial{t}}+ | + | |
- | \vec{u} \cdot \nabla | + | |
- | $| | + | |
|Local Derivative|$ \frac{\partial }{\partial t}$| | |Local Derivative|$ \frac{\partial }{\partial t}$| | ||
|Advection|$ \vec{u} \cdot \nabla\rho $| | |Advection|$ \vec{u} \cdot \nabla\rho $| | ||
Line 165: | Line 160: | ||
\begin{equation*} | \begin{equation*} | ||
- | \(S (C_i)= Q_i &\neq\ 0 | + | S (C_i)= Q_i \neq\ 0 |
\end{equation*} | \end{equation*} | ||
Line 171: | Line 166: | ||
\begin{equation*} | \begin{equation*} | ||
- | \frac{\partial | + | \frac{\partial C_i}{\partial t} + |
- | \frac{\partial}{\partial x}}(C_i u) + | + | \frac{\partial}{\partial x}(C_i u) + |
- | \frac{\partial}{\partial y}}(C_i v) + | + | \frac{\partial}{\partial y}(C_i v) + |
- | \frac{\partial}{\partial z}}(C_i w) | + | \frac{\partial}{\partial z}(C_i w) |
- | = Q_i, | + | = Q_i |
\end{equation*} | \end{equation*} | ||
Line 181: | Line 176: | ||
\begin{equation*} | \begin{equation*} | ||
- | \frac{D{C_i}}{D{t}} + C_i\cdot | + | \frac{DC_i}{Dt} + C_i\cdot |
- | \left( \frac{\partial{u}}{\partial{x}} + | + | ( \frac{\partial u}{\partial x} + |
\frac{\partial{v}}{\partial{y}} + | \frac{\partial{v}}{\partial{y}} + | ||
- | \frac{\partial{w}}{\partial{z}} | + | \frac{\partial{w}}{\partial{z}} ) = Q_i |
\end{equation*} | \end{equation*} | ||
Line 194: | Line 189: | ||
^ Definition | ^ Definition | ||
- | |Tracer Equation (no diffusion) |$ | + | |Tracer Equation (no diffusion) |$ Q_i=\frac{\partial{C_i}}{\partial{t}} + \nabla |
- | Q_i=\frac{\partial{C_i}}{\partial{t}} + | + | |Tracer Equation with diffusion ((This includes Fick's first law: \begin{equation*}\vec{J_D} = - k_i \vec{\nabla} C_i\end{equation*} ))|$Q_i |
- | \nabla | + | |Tracer Equation for Seasalt S \\ (for $ C_{i} = S$ and no salt sources |
- | $|Change of parcel concentration \\ Local Derivative \\ \\ Sink/ | + | |
- | |Tracer Equation with diffusion ((This includes Fick's first law: \begin{equation*}\vec{J_D} = - k_i \vec{\nabla} C_i\end{equation*} ))|$ | + | |
- | Q_i -\nabla \cdot \vec{J_D} | + | |
- | \frac{\partial{C_i}}{\partial{t}} + | + | |
- | \nabla | + | |
- | $|Diffusion |$ -\nabla \cdot \vec{J_D} $| | + | |
- | |Tracer Equation for Seasalt S \\ (for $ C_{i} = S$ and no salt sources | + | |
==== Temperature Equation ==== | ==== Temperature Equation ==== | ||
Line 228: | Line 216: | ||
\end{equation*} | \end{equation*} | ||
- | To receive the final version of this equation it needs to account for sources and sinks, making $S(A)&\neq 0$. Such sources and sinks could be an internal heat source $Q_T$ or an external heat flux $\vec{J_T}$, | + | To receive the final version of this equation it needs to account for sources and sinks, making $S(A)\neq 0$. Such sources and sinks could be an internal heat source $Q_T$ or an external heat flux $\vec{J_T}$, |
\begin{equation*} | \begin{equation*} |